SM2 Unit 1 Extra Practice

1.1- Simplify and justify your process for each problem.								
1)	$x^6 \cdot x^7$	2)	$x^{-1}x^2$					
	x ³ · x ⁷ ×		×					
3)	$(x^2)^3$	4)	$-\frac{2a^3}{4a^7}$ $-\frac{1}{2a^4}$					
5)	$(3r^4)(-6r^2)$	6)	$-\frac{3t^9}{6t^{18}}$ $-\frac{1}{2a^4}$					
7)	$(y^2)^4$	8)	$2x^{2} \cdot (x^{2})^{5}$ $2x^{2} \cdot \chi^{10}$ 12 2χ					
9)	$(-3u^8)(-2u^2)$	10)	$a^{3}b^{4} \cdot ab^{6}(ab)^{0}$					
11)	$\frac{8t^{-3}}{-2t^{-5}} = -4t^{2}$	12)	$(-2t^5)^3$ -8 t^{15}					
13)	$y^{-3}y^{5}$	14)	$\frac{W^{-4}}{W^{6}} \xrightarrow{\iota} \qquad \qquad$					
15)	$(y^2)^6 \cdot 3y^5$ $y^{12} \cdot 3y^5$ $3y^{17}$	16)	$\frac{(t^2)^5}{(t^3)^4}$ $\frac{t^{10}}{t^{12}} \rightarrow \frac{1}{t^2}$					

17) Put an "X" in the column with the most appropriate unit of measure for each scenario.

		in	in ²	in ³
a)	The amount of flat space on a table top.		X	
b)	The amount of land covered by grass in your neighbor's yard.		×	
c)	The amount of pudding it would take to fill a swimming pool.			×
d)	The distance you walked to school.	X		
e)	The amount of space on a wall to paint.	-	×	
f)	You are making a sand box and you need to fill it with sand.			V
g)	You are late for class and you need to run the distance from your car to your first period.	×		
h)	The amount of space inside a dog kennel.			X

Write 3 paragraphs, one for each column, explaining why the scenarios you placed into each column belong in that column.

in. column are all distances/lengths, one-dimensional in.² column are all area, two-dimensional in.³ column are all volume, twree-dimensional in.³

1.2- Find the measure of each quantity. Include units.

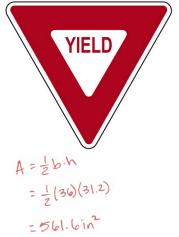
18) A rectangular garden is 15 ft by 25 ft.
They want to decrease the garden and put in a 3 ft wide walkway completely around it. What is the new perimeter of the garden?

P=21+2w P = 2(19) + 2(9)= 56 ft

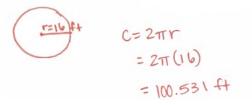
- 19) The radius of the Earth is about 3959 mi. What is the surface area of the Earth?
 - $SA = 4\pi r^{2}$ = $4\pi (3959)^{2}$ = 196,961,284.3 mi²
- 20) You are filling a conic shaped balloon with helium. When it is full, the radius of the base of the cone is 6 *in* and the balloon is 15 *in* tall. How many cubic inches of helium are in the balloon?

Is in.
$$V = \frac{1}{3}B \cdot h$$

avea of base (circle)
 $B = \pi r^2$
 $= \pi (6) = 36\pi$
 $V = \frac{1}{3}36\pi \cdot 15 = 565.5 \text{ in}^3$


21) The tiny home movement is in full swing. You see some plans for a tiny house that is shaped like a cube with a square pyramid (with the same sized base as the cube) placed on top for a roof. The sides of the cube all measure 10 *ft* and the pyramid on top is 5 *ft* tall. How much space is inside this tiny home?

$$10ft = 10Ft V cube = 10.10.10 = 1000 H^{2}$$


$$V py initial = \frac{1}{3}(10.10) \cdot 5 = 166.7$$
for $V_{house} = 1000 + 166.7$

$$= 1166.667 \text{ fr}^{3}$$

22) What is the surface area of a yield sign if the top is 36 in wide and the height is 31.2 *in*? (Ignore the curved edges.)

23) What is the distance around a circular fountain if the radius is 16 ft?

1.3- Put each polynomial in standard form. Identify the lead coefficient and name based on degree and number of terms.

24)
$$-4k + 7k^4$$

Standard Form: 7K4-4K LC: 7 Name: fourth degree binomial

26)
$$4x - 8 + \frac{1}{2}x^2$$

Standard Form: $\frac{1}{2}X^2 + 4X - 8$ LC: $\frac{1}{2}$ Name: quadratic trinomial

28) 10

Standard Form: 10 LC: 10 Name: constant workind

Perform the indicated polynomial operations.

30)
$$(4m^4 + 8m^2) - (m^4 + 4m^2 + m^3)$$

 $3m^4 + 4m^2 - m^3$

32)
$$(-7x^2 - 8x) - (-5x - 6x^2)$$

 $-x^2 - 3x$

25)
$$-3x^2$$

Standard Form:
$$-3 \times ^{2}$$

LC: -3
Name: quadratic monomial
27) $-a^{2} - 5 - 10a^{3} + 7a$

29)
$$3x - 4$$

Standard Form: 3x-4 LC: 3 Name: linear binomia

31)
$$(6n - 2n^2 + 7n^3) + (5n^3 + 8n^5 - 5n)$$

33)
$$(4v - 3)(8v - 5)$$

 $32\sqrt{2} - 20\sqrt{2} - 24\sqrt{2} + \sqrt{5}$
 $32v^2 - 44v + 15$

34) 6x(x-7) $6x^{2}-42x$ 35) (2n-6)(n-1) $2n^{2}-2n-6n+6$ $2n^{2}-8n+6$ 36) (2x-5)(2x+5) $4x^{2}+10x-10x-25$ $4x^{2}-25$ 37) $(4b+3)^{2}$ $(4b+3)^{2}$ (

38) $8h^3(2h^4 - 3h)$

16h7-24h4

1.4- Use the following functions for problems 39-44:

Given f(x) = -3x + 7 and g(x) = 5x - 2, simplify the expressions. Explain what each one means:

45)	(f+g)(x) (-3x+7)+(5x-2) 2x + 5	46)	(f - g)(x) (-3×+7) - (5×-2) -3×+7 -5×+2 -8×+9	47)	(fg)(x) (-3x+7)(5x-2) $-15x^{2}+(5x+35)x - 14$ $-15x^{2}+41x - 14$
48)	$(f + g)(2)$ $2(2) + 5$ $= \square$ $0R$ $f(2) + g(2)$ $(-3(2) + 7) + (5(2) - 2)$ $(-9 + 7) + (10 - 2)$ $(1) + (8)$ $= \square$	49)	(f - g)(0) - \$(0) + 9 = 9 or f(0) - g(0) (-3(0) + 7) - (5(0) - 2) (7) - (-2) = 9	50)	$(fg)(3)$ $-15(3)^{2}+41(3)-14$ $= -26$ 02 $f(3) \cdot g(3)$ $(-3(3)+2) \cdot (5(3)-2)$ $(-9+7) \cdot (15-2)$ $(-2) \cdot (13) = -26$